Spectral methods for nonstationary spatial processes

نویسنده

  • B MONTSERRAT
چکیده

We propose a nonstationary periodogram and various parametric approaches for estimating the spectral density of a nonstationary spatial process. We also study the asymptotic properties of the proposed estimators via shrinking asymptotics, assuming the distance between neighbouring observations tends to zero as the size of the observation region grows without bound. With this type of asymptotic model we can uniquely determine the spectral density, avoiding the aliasing problem. We also present a new class of nonstationary processes, based on a convolution of local stationary processes. This model has the advantage that the model is simultaneously defined everywhere, unlike ‘moving window’ approaches, but it retains the attractive property that, locally in small regions, it behaves like a stationary spatial process. Applications include the spatial analysis and modelling of air pollution data provided by the US Environmental Protection Agency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some New Methods for Prediction of Time Series by Wavelets

Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...

متن کامل

Nonparametric Estimation of Spatial Risk for a Mean Nonstationary Random Field}

The common methods for spatial risk estimation are investigated for a stationary random field. Because of simplifying, lets distribution is known, and parametric variogram for the random field are considered. In this paper, we study a nonparametric spatial method for spatial risk. In this method, we model the random field trend by a local linear estimator, and through bias-corrected residuals, ...

متن کامل

A class of nonseparable and nonstationary spatial temporal covariance functions.

Spectral methods are powerful tools to study and model the dependency structure of spatial temporal processes. However, standard spectral approaches as well as geostatistical methods assume separability and stationarity of the covariance function; these can be very unrealistic assumptions in many settings. In this work, we introduce a general and flexible parametric class of spatial temporal co...

متن کامل

State-space multitaper time-frequency analysis

Time series are an important data class that includes recordings ranging from radio emissions, seismic activity, global positioning data, and stock prices to EEG measurements, vital signs, and voice recordings. Rapid growth in sensor and recording technologies is increasing the production of time series data and the importance of rapid, accurate analyses. Time series data are commonly analyzed ...

متن کامل

A formal test for nonstationarity of spatial stochastic processes

Spatial statistics is one of the major methodologies of image analysis, field trials, remote sensing, and environmental statistics. The standard methodology in spatial statistics is essentially based on the assumption of stationary and isotropic random fields. Such assumptions might not hold in large heterogeneous fields. Thus, it is important to understand when stationarity and isotropy are re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002